Science is still a long way from understanding why some people are more prone to alcoholism and alcohol abuse than others, but University of Washington researchers have discovered that concentrations of a neurotransmitter in the brains of mice are directly related to alcohol consumption and resistance to the sedative effects of alcohol.
Writing in tomorrow's issue of the journal Nature, the UW scientists report that genetically altered mice that do not produce the naturally occurring brain chemical or neurotransmitter called neuropeptide Y (NPY) drank significantly more alcohol and were less affected by its sedative, or sleep-inducing, effects than normal mice. In addition, genetically engineered mice that produce abnormally high levels of NPY drank less alcohol than normal mice and were highly prone to succumb to its sedative effects.
"This is the first direct demonstration that there are altered levels of alcohol consumption if you change the amount of NPY present in the brains of rodents," said Todd Thiele, who headed the UW team along with Richard Palmiter. "Alcohol consumption and resistance are inversely proportional to concentrations of NPY in the brain. Together, these data indicate that in rodents there is a relationship between NPY levels and the willingness to voluntarily consume alcohol."
The researchers cautioned that while their results with mice are convincing, further research is necessary to determine if there is a relationship between NPY and alcohol consumption and abuse in humans. They next plan to try to find the mechanism by which NPY in the brain modulates alcohol drinking.
"This study is important for two reasons," according to Dr. Enoch
Gordis, director of the National Institute on Alcohol Abuse and Alcoholism. "It
indicates that peptides related to appetite and anxiety are significant areas
for study in alcohol research and that drugs designed to interact with
components of the n
'"/>
Contact: Joel Schwarz
joels@u.washington.edu
206-543-2580
University of Washington
26-Nov-1998