In an effort to understand the sensitivity of the human prenatal brain to alcohol, scientists are engaging in a delicate area of research. In a study published in the September issue of Alcoholism: Clinical & Experimental Research, scientists compared the metabolism of alcohol in prenatal human brain and liver tissue with the metabolism in both prenatal and adult rodent brain and liver tissue. More specifically, researchers closely examined the conversion of alcohol to acetaldehyde (AcHO) -- a highly reactive and toxic alcohol metabolite -- in the human prenatal brain.
"The public gets outraged when they hear about crack babies," observed Thomas R. Hinds, research associate professor at the University of Washington, "but are relatively blas about children born with alcohol-induced birth defects. The more that we as scientists can substantiate the links between prenatal alcohol exposure and Fetal Alcohol Effects and the more severe Fetal Alcohol Syndrome, the more likely the public will accept it as fact."
The first step in the metabolism of alcohol is its conversion to acetaldehyde (AcHO). AcHO belongs to a class of compounds called aldehydes (such as formaldehyde, a disinfectant and preservative), and is well known as a highly reactive and toxic chemical that can damage the cells of all living things. Normally, the liver is responsible for detoxifying the body from alcohol; alcohol is converted to AcHO in the liver, which is then rapidly metabolized to acetate, which is then further metabolized by tissues outs
'"/>
Contact: Mont R. Juchau, Ph.D.
juchau@u.washington.edu
206-543-8930
Alcoholism: Clinical & Experimental Research
13-Sep-2000