The Weizmann Institute of Science team that developed the computer published these results today in Nature. Headed by Prof. Ehud Shapiro, of the Departments of Computer Sciences and Applied Mathematics, and Biological Chemistry, the team included research students Yaakov Benenson, Binyamin Gil, Uri Ben-Dor and Dr. Rivka Adar. Shapiro presented the team's findings today at the Brussels symposium "Life, a Nobel Story," in which Nobel Laureates and others addressed the future of the life sciences.
As in previous biological computers produced in Shapiro's lab, input, output and "software" are all composed of DNA, the material of genes, while DNA-manipulating enzymes are used as "hardware." The newest version's input apparatus is designed to assess concentrations of specific RNA molecules, which may be overproduced or under produced, depending on the type of cancer. Using pre-programmed medical knowledge, the computer then makes its diagnosis based on the detected RNA levels. In response to a cancer diagnosis, the output unit of the computer can initiate the controlled release of a single-stranded DNA molecule that is known to interfere with the cancer cell's activities, causing it to self-destruct.
In one series of test-tube experiments, the team programmed the computer to identify RNA molecules that indicate the presence of prostate cancer and, following a correct diagnosis, to release the short DNA strands designed to kill cancer cells. Similarly, they were able to
'"/>
Contact: Alex Smith
asmith@jgordonassociates.com
212-367-3892
American Committee for the Weizmann Institute of Science
28-Apr-2004