In a paper featured on the cover of the May 14 issue of the journal Cell, UCSD biologists headed by Charles S. Zuker, a professor of biology and of neurosciences, and postdoctoral fellow Tomer Avidor-Reiss report the identification of some 40 genes that play a role in cilia formation, six of which, they discovered, are essential for the assembly of this cell structure.
"These six genes are fundamentally and universally important for any cell to build cilia," says Zuker, who is also a Howard Hughes Medical Institute investigator, "because if a cell doesn't have all of them, it is unable to grow cilia."
The discovery of these genes provides medical researchers with a critical new tool to help in diagnosing genetic diseases involving cilia dysfunction and possibly in developing drugs that can minimize the health effects of such dysfunctions.
"This will provide the basic foundation for researchers to understand how cilia form and the genetic basis for so many of these human genetic disorders," says Avidor-Reiss. "It is only recently that scientists began to realize that there are links between cilia dysfunction and a wide range of human genetic diseases. Now we have an exciting collection of candidate genes."
In humans, sperm navigate toward the egg by propelling themselves with a type of cilia known as flagella. Defects in these whip-like cilia, result in non-motile sperm and male infertility, and are probably the most commonly known type of cilia dysfunctions. Other widely known human cilia disorders include the pulmonary diseases caused by defective respiratory cilia, which cle
'"/>
Contact: Kim McDonald
kmcdonald@ucsd.edu
858-534-7572
University of California - San Diego
13-May-2004