"We showed that we can do this efficiently with a reasonable fraction of the genes that TWINSCAN predicts and that you can actually produce a gene structure with the method," Brent said. "These predictions are a viable springboard for doing experiments. When you start with a prediction you'll get an experimental result pretty frequently. We believe it's a good way to complete the annotation of a genome."
The approach stands traditional genome annotation on its head because it starts with a computer analysis of genome data, using that as a hypothesis and drawing experiments from the hypothesis.
"Currently, experimental sequencing of both genomes and gene products is followed by computational analysis of the resulting sequences," said Brent. "It's a one way street. We want to integrate computational and experimental genomics, so that the parts of the process talk to each other."
'"/>
Contact: Tony Fitzpatrick
tony_fitzpatrick@wustl.edu
314-935-5272
Washington University in St. Louis
10-May-2004