The study, published today in the Proceedings of the National Academy of Sciences, shows that waste left behind by flocks raised in industrial chicken houses is rich in genes called integrons that promote the spread and persistence of clusters of varied antibiotic resistance genes.
"We were surprised to find a vastly greater pool of these multi-resistance clustering agents than anyone had suspected before," said Anne Summers, a microbiologist from UGA who led the study. "Finding such a huge reservoir of integrons explains a long-standing puzzle about how clusters of resistance genes spread so rapidly and persist in bacterial communities even after antibiotic use concludes."
Other authors of the paper included Sobhan Nandi, a postdoctoral associate in the UGA department of microbiology; and John Maurer and Charles Hofacre of the department of avian medicine in UGA's College of Veterinary Medicine. Maurer also holds an appointment with the Center for Food Safety in Griffin.
Antibiotic resistance is a serious and growing problem for farm animal operations and human health. Antibiotic use in treating disease and increasing feed efficiency has been a common part of industrial farms for more than half a century. When antibiotic-resistant bacteria began to show up in hospitals in the 1950s, researchers initially believed that simply restricting the use of antibiotics on farms could reduce the prevalence of antibiotic resistance among humans, but it hasn't been that easy.
"Over the past 30 yea
'"/>
Contact: Phil Williams
phil@franklin.uga.edu
706-542-8501
University of Georgia
19-Apr-2004