Berkeley -- A new species of salamander discovered in an isolated range of hills in southeastern Mexico highlights the agile inventiveness of evolution as well as the many species still waiting to be discovered in out of the way spots and even under our noses.
The soil dwelling salamander looks identical to a salamander living in mountain foothills several hundred miles away, but DNA analysis by zoologists at the University of California, Berkeley, showed them to be distinct species. Experts can't tell them apart, but they apparently evolved from different ancestors and are not one another's closest relatives.
The finding, reported this week in the online edition of the Proceedings of the National Academy of Sciences, demonstrates an evolutionary concept called parallelism, a situation where two organisms independently come up with the same adaptation to a particular environment.
The discovery is one of many surprises that have emerged in the past few years as biologists use DNA comparisons to distinguish species and chart family trees. More and more researchers are finding that what once were thought to be separate populations of the same species are, in fact, different species or lineages, each as genetically distinct as a horse from a cow.
"Biodiversity has been grossly underreported," said David Wake, professor of integrative biology at UC Berkeley and co-author of the PNAS paper with former graduate student Gabriela Parra-Olea, now a postdoctoral fellow at the Museum of Comparative Zoology at Harvard University and soon to take up a post at the University of Mexico in Mexico City.
This unsuspected diversity, often termed "cryptic biodiversity," is turning up in everything from whales to birds, fungi to flowering plants. It has implications for those who keep track of species, such as those who enforce the Endangered Species Act, as well as for biologists attempting to assess diversity in a particular region. Plus, i
'"/>
Contact: Robert Sanders
rls@pa.urel.berkeley.edu
510-643-6998
University of California - Berkeley
3-Jul-2001