The new study addresses several problems that have plagued previous attempts to regenerate damaged heart muscle, according to Theo Kofidis, M.D., who has an active tissue engineering program at Stanford.
"Tissue engineering holds out promise of truly healing the heart after congestive heart failure," said Dr. Kofidis, lead author of the study and research fellow in cardiothoracic surgery at the Falk Research Center at Stanford University Medical School in Stanford, Calif. "There are 460,000 cases of congestive heart failure in the United States each year and the preeminently efficient treatment we have at this time is heart transplantation. Through tissue engineering we could actually restore the function of the heart by replacing large portions of the damaged heart muscle by a bioartificial one."
Dr. Kofidis spoke today at an American Medical Association media briefing on cardiology in New York City.
Kofidis and his colleagues had been working with bone marrow stem cells, but these cells were not able to become heart muscle cells and regenerate the heart. "In our most recent studies we showed that mouse and human embryonic stem cells improved heart function, had superior survival within the heart weeks later we still saw improved heart function and had definitely differentiated into heart muscle cells," he said. "We inserted a bioluminescent marker (what causes fireflies to luminesce) into our stem cells and were able to see that they engrafted in the living organ."
There a
'"/>
Contact: Amy Adams
amyadams@stanford.edu
650-723-3900
American Medical Association
13-May-2004