Luckily, there are microbes, called methanotrophs, that consume methane. They've been found in soils, landfills, sediments, hotsprings, and peat bogs, among other environments. Methanotrophs have been the subject of increasing interest because they can use methane as a sole source of carbon and energy and could dramatically reduce biologically generated methane emissions. They've also been the focus of bioremediation efforts aimed at environmental decontamination. And now, with the publication of the first complete genome sequence of a methanotroph, such efforts will be all the easier. This week in PLoS Biology, a multidisciplinary team spanning the fields of genomics, bioinformatics, microbiology, evolutionary biology, and molecular biology report the complete genome sequence of Methylococcus capsulatus and shed light on the metabolism and biology of this ubiquitous microbe.
The genome appears well-equipped to meet the specialized needs of this methanotroph. Ward et al. found evidence of "genomic redundancy" in methane oxidation pathways, suggesting that M. capsulatus employs different pathways depending on the availability of molecules needed to sustain cellular activities. Most surprising, the researchers note, was evidence that this methane specialist can turn into a sort of metabolic generalist-with a capacity to use sugars, hydrogen, and sulfur-and appears able to survive
'"/>
Contact: Paul Ocampo
pocampo@plos.org
415-624-1224
Public Library of Science
20-Sep-2004