Now, Rockefeller University researchers in collaboration with two European scientists, have discovered a way around this problem: they've devised a system for maintaining existing or new human stem cell lines that excludes the need for troublesome mouse feeder cells.
The findings also have an intriguing underpinning. A marine animal belonging to the gastropod mollusk group is the original source of the compound now in use in the new feeder-free system. The natural molecule from which the new compound has now been synthesized has been harvested for over 2500 years from the creature, known as the red mollusk, as a coveted purple dye.
The identification of the small molecule, pharmacological inhibitor system in stem cells, led by Ali Brivanlou, Ph.D., head of the laboratory of molecular vertebrate embryology and his research associate, Noburo Sato, Ph.D., so far demonstrates superior stability over other methods designed to circumvent the need for mouse feeder cells. Nature Medicine features Brivanlou, Sato and their colleagues' results in its January 2004 edition. And though still early in the team's experiments, the stem cells appear to progress and differentiate normally after the compound is removed.
This new system for maintaining pluripotency could be a providential break for basic researchers and clinicians investigating the potential of HESCs, as it is a potential first step in providing an unlimited source of tissue transplant if HESCs' potential comes to fruition in clinical medicine.
It works like this: a newly purified compound f
'"/>
Contact: Lynn Love
lovel@rockefeller.edu
212-327-8977
Rockefeller University
7-Jan-2004