The work is related to efforts aimed at developing techniques to use plants and microorganisms as natural factories for producing pharmaceuticals. Such techniques would be safer and more environmentally friendly than conventional methods for making drugs, which often require hazardous chemicals and steel "reactors" operated at high pressures and temperatures. The enzymes from plants and other organisms typically function in water near room temperature under ordinary pressure.
The Purdue researchers demonstrated that altering the nutrients and carefully controlling fermentation time caused yeast cultures to produce an enzyme called ferulate 5-hydroxylase that has twice its normal rate of activity, which increases the enzyme's productivity.
"Activity relates to the amount of product that can be synthesized in a given time," said John Morgan, an assistant professor of chemical engineering at Purdue. "So we could make more than twice the amount of product per hour."
Findings are detailed in a paper appearing in the Jan. 20 issue of the journal Biotechnology and Bioengineering, published by John Wiley & Sons Inc. The paper was written by Morgan and Purdue doctoral student Hanxiao Jiang.
The enzyme is a member of a family of enzymes called cytochrome P450, which plants need to produce numerous chemical compounds.
Plants ordinarily produce small quantities of "flavonoids," which are beneficial chemicals known as antioxidants. So researchers are developing ways to boost production of the chemicals by transferring vital enzymes from plants to microorganisms. Because P450 enzymes are "biocatalysts" that enable an organism to produce the beneficial drugs, researchers are trying to develop techniques t
'"/>
Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
28-Jan-2004