The key is an innovative, single-chambered microbial fuel cell. The prototype is described in the online version of the journal Environmental Science & Technology (http://pubs.acs.org/journals/esthag/); the article will also appear in a future print version of ES&T.
A fuel cell operates akin to a battery, generating electricity from a chemical reaction. But instead of running down unless it's recharged, the cell receives a constant supply of fuel from which electrons can be released. Typical fuel cells run off of hydrogen. In a microbial fuel cell, bacteria metabolize their food-in this case, organic matter in wastewater-to release electrons that yield a steady electrical current.
The single-chambered prototype, developed by researchers at Pennsylvania State University with support from the National Science Foundation (NSF), allows the process to work efficiently in wastewater.
In their paper, the researchers suggest that the improved design could usher in a "completely new approach" to wastewater treatment: "If power generation in these systems can be increased, microbial fuel cell technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations."
An $87,000 grant from NSF's Small Grants for Exploratory Research
(SGER) program supported the project. Such SGER-called
"sugar"-grants foster small-scale, innovative preliminary
research on untested, novel ideas. They also sometimes fund quick-
response research on natural disasters and other unanticipated
events or support research to Scatalyze" eme
'"/>
Contact: Sean Kearns
skearns@nsf.gov
703-292-7963
National Science Foundation
23-Feb-2004