"Researchers studying degenerative and developmental diseases from Parkinson's and Huntington's to autism and epilepsy now will have genetic access to the brain without all the effort required of doing their own molecular genetics from scratch," says Heintz. "Gensat will advance the experimentation that can be done based on the information provided in the atlas; to me this is the key contribution of our project."
The project, called Gensat (Gene Expression Nervous System Atlas) employs a method for manipulation of "bacterial artificial chromosomes" or BACs, developed by project co-leader Heintz, professor and head of the Laboratory of Molecular Biology at Rockefeller and an investigator at the Howard Hughes Medical Institute. BACs in an early form provided the backbone of The Human Genome Project; Heintz discovered how to manipulate them by inserting, changing or deleting parts of the large gene sequences composing them. Once created, the modified BACs for individual genes are inserted into the genome of laboratory mice to assess gene expression.
The BAC technology provides unparalleled insight because it identifies the actual cell types in the brain in which individual genes express themselves. Heintz also added a reporter gene to the BACs so that cells with the selected gene activity glow bright green. Many new brain cell types or subtypes have been discovered in this project as a result of the potent tool. (Traditional methods of genetic analysis such as in situ hybridization cannot distinguish among cell types
'"/>
Contact: Lynn Love
lovel@rockefeller.edu
212-327-8977
Rockefeller University
29-Oct-2003