A team headed by Dr. Uri Alon, of the Weizmann Institute of Science's Molecular Cell Biology Department has found several such organizational patterns which they call "network motifs" underlying genetic, neural, technological, and food networks. The mathematical technique was first proposed by Alon earlier this year (published in Nature Genetics) and has now been shown to be applicable in a wide range of systems.
In developing the technique, Alon surmised that patterns serving an important function in nature might recur more often than in randomized networks. This in mind, he devised an algorithm that enabled him to analyze the plentiful scientific findings examining key networks in some well-researched organisms. Alon noticed that some patterns in the networks were inexplicably more repetitive than they would be in randomized networks. This handful of patterns was singled out as a potential bundle of network motifs.
Surprisingly, the team found two identical motifs in genetic and neural systems. "Apparently both information-processing systems employ similar strategies," says Alon. "The motifs shared by neural and genetic networks may serve to filter noise or allow for complex activation of neurons or genes."
Exposing the "wiring" of such networks can thus help scientists classify systems generically (just as lions and mice both belong to the same "class," neural and genetic systems could be classified in the same generic category if they have many motifs in common). This would
'"/>
Contact: Jeffrey Sussman
jeffrey@acwis.org
212-895-7951
American Committee for the Weizmann Institute of Science
6-Nov-2002