The team studied seven different ecosystems and found motifs relating to food webs. One recurring pattern shows that different species of prey of a given predator often compete over a shared food resource. This food resource is not shared by the predator.
Alon's method detects network motifs on the basis of their frequency. Any patterns that are functionally important but not statistically significant will not be picked up by this method. But it is an important step forward in exposing the backbones of complicated systems.
What could this pristine territory offer to humankind? The dream, says Alon, is to detect and understand the fundamental laws governing our bodies, rendering the workings of a cell fully evident and the means of repairing it clear cut. One day in the distant future, scientists hope, doctors' work will be comparable to that of present-day electronic engineers. They will analyze blueprints of malfunctioning cells and then set to work to put them back in shape.
Alon's research team at Weizmann included students Ron Milo, Shalev Itzkovitz, Nadav Kashatan, and Shai Shen-Orr. Donor Support for Dr. Uri Alon: James and Ilene Nathan Charitable Directed Fund, Mrs. Harry M. Ringel Memorial Foundation, Charpak-Vered Visiting Fellowship, Ottawa, Canada, Yad Hanadiv, Clore Center for Biological Physics, Yad Abraham Center for Cancer Diagnostics and Therapy, Rita Markus Foundation Inc. and Minerva Stiftung Gesellschaft fuer die Forschung m.b.H. Dr. Alon is the incumbent of the Carl & Frances Korn Career Development Chair in the Life Sciences.
'"/>
Contact: Jeffrey Sussman
jeffrey@acwis.org
212-895-7951
American Committee for the Weizmann Institute of Science
6-Nov-2002