The team -- led by Fred Dietrich, Ph.D., of the IGSP's Center for Genome Technology, and Peter Phillipsen, Ph.D., of the University of Basel -- reported its findings online in the March 4, 2004, Science Express, the online version of the journal Science. The work was completed with the funding and collaboration of Novartis (now Syngenta) in Research Triangle Park, N.C. The researchers have no financial ties to Novartis or Syngenta.
The sequencing of the fungal genome has already shed light on the evolution of Saccharomyces cerevisiae -- the single-celled baker's yeast that scientists rely on for the study of many basic questions in cell biology. Furthermore, understanding the infectious microbe's genetic instructions might allow scientists to tease out the fundamental features responsible for some fungi's ability to cause disease, the researchers said.
"We expect many similarities in function among all types of fungal pathogens -- whether they infect plants or humans," said Dietrich, first author of the study. "Understanding one will provide insight into fungal pathogens in general in terms of the forces that drive them."
Ashbya's stripped-down genome -- containing just 9.2 million DNA base pairs, the fundamental building blocks of inheritance -- will further simplify the task of deciphering genes and their functions, he added. The genomes of other important fungal pathogens can include as many as 200 million base pairs, more than 2
'"/>
Contact: Kendall Morgan
kendall.morgan@duke.edu
919-684-4148
Duke University Medical Center
4-Mar-2004