The putative skin stem cells reproduce themselves seemingly indefinitely in the laboratory, the study found. When engrafted onto the backs of hairless mice, the cells also formed stretches of skin, tufts of hair, and sebaceous glands, which secrete an oily substance known as sebum that lubricates skin and hair.
"We've identified cells within skin that bear all the characteristics of true stem cells--the ability for self renewal and the multipotency required to differentiate into all lineages of epidermis and hair," said Elaine Fuchs, cell biologist at Rockefeller University and senior author of the study. "The results demonstrate for the first time that individual cells isolated from hair follicles can be cultured in the laboratory and retain a capacity to make multiple cell types when grafted."
The team's analysis of the versatile skin cells also offers new insights into the underlying genetic signature common to all stem cells, said the researchers.
Stem cells are undifferentiated cells whose daughters give rise to the specialized cell types that make up an organism. Embryonic stem cells, which emerge in the first days of an embryo's development, have the potential to differentiate, or specialize, into each of the 200 types of tissue in the body. In contrast, adult stem cells fou
'"/>
Contact: Heidi Hardman
hhardman@cell.com
617-397-2879
Cell Press
2-Sep-2004