Joltin' Joe is immortalized in song, Babe Ruth in a candy bar, but only Michael Jordan has a gene named after him.
Jordan's legendary leaping ability has inspired two cell biologists at Washington University in St. Louis to name a transposon -- a highly specialized gene -- after the sports and cultural icon. A transposon is a type of gene, common in organisms ranging from algae to humans, that literally jumps from one cell site to another.
While transposons are abundant, controlling them for useful research has been nearly impossible, until David Kirk, Ph.D., professor of biology, and Stephen Miller, Ph.D., research associate in biology in Arts and Sciences, found an environmental control for one kind of transposon. The transposon that Kirk and Miller have discovered in Volvox, a green alga, will jump when it's stressed -- not by a harassing New York Knicks doubleteam but by cold temperatures that the biologists use to grow special Volvox cultures.
When it jumps, Kirk and Miller can recognize where Jordan lands by its characteristic genetic signature, as recognizable to a biologist peering through a microscope as a player's slam dunk is to a fan watching replays. They then use Jordan to isolate genes of interest to understand their form and function. The Jordan jumping gene has helped the developmental biologists discover and analyze two important genes that play key roles in one of life's greatest mysteries: how individual cells reproduce and become specialized.
Kirk and Miller report the sequencing, or genetic analysis, of a key gene necessary for cell division and another "master control" gene that regulates cell type in Volvox in the Feb. 15, 1999, issue of the journal Development. Their research is sponsored by the National Science Foundation and the United States Department of Agriculture.
"Jordan has two special genetic sequences at its ends that permit the gene to
cut its way out of a cell at one location and reinsert itself at an
'"/>
Contact: Tony Fitzpatrick
tony_fitzpatrick@aismail.wustl.edu
314-935-5272
Washington University in St. Louis
8-Apr-1999