Keasling and his Samoan collaborators will freeze living cells from the mamala tree in liquid nitrogen so that extraction of the perishable RNA can be conducted in the laboratory. Then begins the process of tracking down the enzymes that actually build the molecule Prostratin.
Once Keasling has pinpointed the key enzymes and cloned their genes, he plans to insert the genes into a strain of E. coli bacteria that he has created to produce isoprenoid compounds like Prostratin. The product of more than 10 years of genetic engineering, the bacterial factories have already proven useful in producing precursors of the anti-malarial drug artemisinin, which he hopes to produce inexpensively for people in the developing world. The process also can be used to produce flavors and fragrances, many of which also are members of the class of chemical compounds called isoprenoids.
'"/>
Contact: Robert Sanders
rls@pa.urel.berkeley.edu
510-643-6998
University of California - Berkeley
30-Sep-2004