A team of University of Iowa researchers has discovered a new mechanism that helps explain how organelles are delivered to the right place at the right time. The research findings appear in the Feb. 16 Nature Advance Online Publication.
Understanding how organelles get to their assigned cellular locations will improve understanding of embryonic development and may have implications for understanding many diseases including cancer and diabetes, said Lois Weisman, Ph.D., UI associate professor of biochemistry and principal investigator of the study.
Weisman and her colleagues made their discovery by studying organelle movement in yeast. The team identified a protein that specifically couples vacuoles (yeast organelles) to the organelle transportation system and also appears to plays a key role in controlling the timing and delivery of the vacuole to its final destination.
Most yeast proteins have direct humans counterparts known as homologs. This similarity makes yeast a good experimental organism because almost everything researchers learn about yeast cells is likely to be applicable to human cells, too. In addition, manipulating and analyzing yeast genes is much easier and faster than working with higher life forms.
The machinery that moves vacuoles in yeast also moves other organelles, as well. One question that interested Weisman and her colleagues was: how can this same mechanism move different organelles to different locations at different times?
The transport system acts like a cable car with motor molecules transporting organelles t
'"/>
Contact: David Pedersen
david-pedersen@uiowa.edu
319-335-8032
University of Iowa
16-Feb-2003