The second version uses a novel detector to measure the position and energy of each X-ray. Incorporating X-ray energy information into the image data set provides greater sensitivity to small variations in tissue density. It also allows researchers to acquire X-ray and nuclear medicine data.
"The nuclear medicine data tells biologists about metabolic activity in the mouse while the X-ray data provides high-resolution structural information," Paulus said.
Paulus and colleagues have already had success with a single-pixel energy-sensitive detector and are developing a multi-element detector array and associated integrated circuits to process the signals.
Ultimately, Paulus hopes the MicroCAT will allow automated screening of mice, which will enable genetics researchers to quickly scan mice and look at phenotypes using a computer program. This will become increasingly important as the worldwide effort to identify gene function intensifies.
Other potential uses for the MicroCAT include in breast cancer screening and possibly in certain industrial processes where precision imaging is important. Paulus believes the MicroCAT could be on the market within two years.
Funding for the project was provided by the Laboratory Directed Research and Development program. Others involved in development of the MicroCAT are Mike Simpson, Chuck Britton and Steve Hicks of the Instrumentation and Controls Division, Doug Lowndes of the Solid State Division and Russ Knapp of the Life Sciences Division.
ORNL, one of DOE's multiprogram research facilities, is managed by Lockheed Martin Energy Research Corporation.
(photo available upon request)
Notes To E
'"/>
Contact: Ron Walli
wallira@ornl.gov
(423) 576-0226
DOE/Oak Ridge National Laboratory
22-Sep-1998