HOME >> BIOLOGY >> NEWS
Molecular 'stop signs' may hold secret of nerve regeneration

Using brain cells from rats, scientists at The Johns Hopkins University School of Medicine and the University of Hamburg have manipulated a molecular "stop sign" so that the injured nerve cells regenerate.

While their findings are far from application in people, the prospects for eventually being able to repair spinal cord injury are brighter, they say.

"Four thousand years ago, physicians wrote that spinal cord injury was untreatable, and unfortunately it's much the same today," says Ronald L. Schnaar, Ph.D., professor of pharmacology and of neuroscience at Hopkins. "But the basic-science framework for improving this situation is quickly emerging."

In adult mammals, including humans, molecular signals carefully control the number of contacts nerve cells make by inhibiting new connections. When the brain or spinal cord has been damaged, the goal is to neutralize those inhibitors so that the long tentacles of nerve cells, the axons, might reestablish their broken connections, says Schnaar.

The research team reports identifying brain chemicals that are involved in the ability of one of the inhibitors to prevent injured nerve cells from connecting to other nerves or muscles. By keeping the chemicals from interacting with the inhibitor, the researchers were able to stimulate damaged nerve cells to regenerate in laboratory dishes. Their report is in the June 11 issue of the Proceedings of the National Academy of Sciences.

"In the central nervous system, once an axon is interrupted in some way, through disease or injury, generally it's stopped dead in its tracks, but in the rest of the body, damaged axons can re-grow," says Schnaar. "To make headway in treating brain and spinal cord injury, we need to attack this problem from a number of angles, and our studies have provided an additional target for intervention."

Of the "stop signs" identified so far, Schnaar's team focused on MAG, or myelin-associated glycoprotein, whi
'"/>

Contact: Joanna Downer
jdowner1@jhmi.edu
410-614-5105
Johns Hopkins Medical Institutions
18-Jun-2002


Page: 1 2

Related biology news :

1. Molecular motor implicated in tissue remodeling
2. 16th EORTC NCI AACR Symposium Molecular Targets and Cancer Therapeutics
3. 16th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics
4. Molecular staples shape a cancer killer
5. Molecular motor myosin VI moves hand over hand, researchers say
6. Molecular therapeutics advance fight against brain cancer
7. Molecular motor shuttles key protein in response to light
8. Molecular traffic cop directs cellular signals
9. Molecular marker predicts success of breast cancer treatment
10. Molecular image of genotoxin reveals how bacteria damage human DNA
11. Molecular mechanism found that may improve ability of stem cells to fight disease

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/7/2016)... 7, 2016  Syngrafii Inc. and San Antonio ... that includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" ... collaboration will result in greater convenience for SACU ... while maintaining existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/2/2016)... , June 2, 2016 The Department ... has awarded the 44 million US Dollar project, for the ... Vehicle Plates including Personalization, Enrolment, and IT Infrastructure , ... in the production and implementation of Identity Management Solutions. Numerous ... however Decatur was selected for the ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 27, 2016 , ... Newly created 4Sight Medical Solutions ... the healthcare market. The company's primary focus is on new product introductions, to ... that are necessary to help companies efficiently bring their products to market. , ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology:
Cached News: