International pressure is mounting to limit carbon emissions because of their role in global climate change. Better understanding of natural processes involved in forest-air carbon exchange may lead to more accurate monitoring methods and new ways to enhance carbon uptake. High carbon-emitting nations and industries are interested in devising strategies for meeting quotas and trading carbon credits.
ACME (short for the Airborne Carbon in the Mountains Experiment) gives scientists an opportunity to combine airborne data with ground-based measurements for the first time to paint a more accurate picture of carbon exchanges in rolling hills and mountain ranges. Results from the field program will also be used in testing computer models of forest ecosystem function. The models will help scientists understand the response of forests to drought, fire, insects, and climate change.
Local researchers are especially interested in a side trip to assess forest-air exchange over the 150,000-acre Hayman fire burn area.
"Wildfires play a big role in controlling vegetation and carbon exchange in the Rockies," says NCAR scientist Dave Schimel, "but most burn areas are too small to assess from an aircraft. For the first time we have a chance to get airborne measurements of carbon directly over a large, disturbed area."
Forest losses during the 2002 wild
'"/>
Contact: Anatta
anatta@ucar.edu
303-497-8604
National Center for Atmospheric Research/University Corporation for Atmospheric Research
26-Apr-2004