Structure Suggests Possibility of Breeding Animals Resistant to 'Mad Cow Disease'
University of California researchers say a newly determined structure of the biological particles called prions may help explain how they cause infectious deadly diseases. Aberrant prions cause scrapie in sheep, bovine spongiform encephalopathy (BSE or "mad cow disease") in cows, and various afflictions in people. The scientists say their finding might also explain prion disease variety and eventually lead to breeding disease-resistant animals.
The research is detailed in the peer-reviewed journal Biochemistry, published by the American Chemical Society (ACS), the world's largest scientific society. It is being released on the ACS Web April 9 and appears in the print edition of the journal on April 27.
Prions are proteins normally found in the brain of all animals. Changes in their three-dimensional structure can cause infectious, fatal neurodegenerative disorders. Further, altered prions seem to act as templates that convert normal prions to the infectious form. Relatively few people suffer from prion diseases, but they cause large problems in sheep flocks and cattle herds. The disease rarely passes between species, but there is evidence that people can be infected by eating tainted beef.
The economic and political consequences of such scares have made understanding the novel mechanisms of prion diseases a very visible quest. Dr. Stanley B. Prusiner, from the University of California at San Francisco (UCSF), was awarded the 1997 Nobel Prize in Physiology or Medicine for discovering prions. He is a collaborator on the current Biochemistry paper.
"Our structural studies show that an important part of the prion protein
exhibits
multiple structures," according to co-author and UCSF pharmaceutical chemist
Thomas L. James, Ph.D. He says that specific area "marks the region
susceptible
to the structural change from the normal cellular form
'"/>
Contact: Charmayne Marsh
y_marsh@acs.org
202-872-4445
American Chemical Society
9-Apr-1999