The new findings may open a novel approach to developing therapies for certain difficult-to-treat infections. The bacteriophage studied, called PRD1, infects antibiotic-resistant strains of E. coli bacteria, including strains responsible for tens of thousands of cases of food poisoning in the United States each year. The intimate knowledge of PRD1's structure provided by the current study might help scientists develop a treatment for E. coli infections involving PRD1.
The structural details show that the bacteriophage has similarities to viruses smaller than itself, simple plant and animal viruses whose outer coats are formed from proteins held together by linked "arms." In addition, however, it also uses small "glue" proteins to cement larger proteins together. This feature makes it more like the human adenoviruses, larger and more complex viruses that infect the respiratory tract and cause other diseases. Taken together, these features place the bacteriophage at an intermediate point on the viral evolutionary tree and help illuminate the overall evolutionary path taken by families of viruses.
The new images show not only the outer coat of the bacteriophage, but also reveal details of its inner membrane, a poorly-understood fatty double layer beneath the coat that forms a protective barrier around the genetic material, or DNA.
"We have been intrigued by the parallels between PRD1 and adenovirus since we discovered
'"/>
Contact: Franklin Hoke
hoke@wistar.upenn.edu
215-898-3716
The Wistar Institute
25-Sep-2002