In addition, the researchers found that there is no universal cross-resistance gene that would block sensitivity to all four drugs. Rather, genes linked to resistance belonged to different functional categories (i.e., they did different tasks in the cell) and these differed for each medication.
"Learning the function of these genes gives us new insights into the causes of resistance to individual drugs used to treat children with ALL," said Monique den Boer, co-author of the study and head of the research laboratory of Pediatric Oncology/Hematology at the Erasmus University.
The study further supports the practice of combination anti-cancer drug therapy to treat ALL.
"The fact that resistance genes fall into groups that perform different functions in the cells demonstrates the importance of using combination therapy to treat cancer," said Ching-Hon Pui, M.D., director of the St. Jude Leukemia/Lymphoma division, the F.M. Kirby Clinical Research Professor for the American Cancer Society and a co-author of the paper.
Combination therapy allows physicians to use multiple anti-cancer drugs to attack different biochemical functions simultaneously.
'"/>
Contact: Bonnie Cameron
bonnie.cameron@stjude.org
901-495-4815
St. Jude Children's Research Hospital
4-Aug-2004