In a study published in the journal Nature, the researchers compared the sequence of the same large genomic region in 13 vertebrate species. The organisms included human, chimpanzee, baboon, cat, dog, cow, pig, rat, mouse, chicken, zebrafish and two species of pufferfish (Fugu, Tetraodon).
"This analysis provides convincing evidence that the sequence of the genomes of a wide range of organisms from chimpanzees to zebrafish provides powerful insight into the understanding of our own genome," said Francis S. Collins, M.D., Ph.D., director of NHGRI. "When it comes to elucidating the biological functions encoded by genomes, it is now clear that there is strength in numbers."
NHGRI Scientific Director Eric D. Green, M.D., Ph.D., led the research team that also included scientists from The Pennsylvania State University, University Park; the University of California, Santa Cruz (UCSC); and the University of Washington, Seattle. "Our efforts have produced the largest data set of evolutionarily diverse genomic sequence generated to date," Dr. Green said. "By focusing on targeted genomic regions, but sequencing them in multiple species, we are getting a previously unavailable glimpse through the window of vertebrate genome evolution."
By systematically comparing the patterns of a certain type of genomic change, called transposon insertions, among the different species' sequences, these investigators were able to address a heated controversy in the field of evolutionary genomics. Their analyses confirm recently proposed trees of mammalian evolution indicating that primates (human, chimpanzee, baboon) are more closely related t
'"/>
Contact: Geoff Spencer
spencerg@mail.nih.gov
301-451-8325
NIH/National Human Genome Research Institute
13-Aug-2003