The finding is likely to relegate the disproven gene to relative obscurity, at least in humans, says Barbara Migeon, M.D., of the McKusick-Nathans Institute of Genetic Medicine, whose laboratory found the human version of the gene in 2001. It also moves the search for the gene from the X chromosome to the 22 other types of chromosomes found in human cells, she adds.
In mammals, one of the two X chromosomes inherited by all females is turned off during development to prevent a dangerous double dose of proteins. A gene called Xist unquestionably turns off X chromosomes in mice, humans and other mammals. Because every cell needs one active X chromosome, Xist must be suppressed on one X in both females and males (which have an X and a Y chromosome). Which gene (or genes) does this is still in question, says Migeon.
In mice, researchers elsewhere pointed to the Tsix gene, because it suppressed Xist and was itself expressed only on the active X. However, studying cells from various human developmental stages, Migeon and her team discovered that human Tsix is expressed only on the inactive X chromosome, right alongside Xist. The two continue to be expressed together until after birth, when for reasons unknown Tsix gradually disappears.
"The difference is striking," says Migeon, also a professor of pediatrics. "In mice, researchers have suggested that Tsix was the gene in mammals that suppresses Xist and allows an X chromosome to remain active, but we've shown clearly that it does not do this in humans."
Migeon suggests instead that the mouse Tsix is involved in imprinting, a way cells determine which of two gene copies to use to make proteins that depends only on which parent the copy came from. In mice, X-inactivation in the placenta is
'"/>
Contact: Joanna Downer
jdowner1@jhmi.edu
410-614-5105
Johns Hopkins Medical Institutions
31-Jul-2002