In 2001, Lorenz Studer, MD, Head of the Stem Cell and Tumor Biology Laboratory at MSKCC, and his colleagues at Rockefeller University published research in which they generated unlimited numbers of genetically matched dopamine nerve cells using cloned stem cells whose genetic material originated from the mouse's own tail. Dopamine neurons are nerve cells that are lost in patients who have Parkinson's disease. (See press release http://www.mskcc.org/mskcc/html/3122.cfm for more information.)
Because the initial method worked for cells derived from some mice but not others, Dr. Studer and his colleagues developed a better, more efficient way of selectively generating dopamine neurons that eliminates that variability in order for therapeutic cloning to work consistently for every animal. While they did not yet develop a new cell line for each of the mice treated, their results prove in principle that the method can work for all cloned cell lines tested.
Using the new technique, the team differentiated stem cells into genetically matched neural cells in vitro. They were able to selectively develop nerve cells specific to the forebrain, midbrain, hindbrain, and spinal cord, as well as supporting neural cell types called glial cells. The research demonstrates how closely the generated nerve cells in the culture dish mimic normal brain cell development, including how long the process takes, the appearance of the cells, and their function.
'"/>
Contact: Esther Carver
mediastaff@mskcc.org
212-639-3573
Memorial Sloan-Kettering Cancer Center
21-Sep-2003