The new research, funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, found that bacteriophages contain genes that allow them to quickly change their proteins to bind to different cell receptors. The researchers, who encountered this genetic property while working on an unrelated project, believe that this discovery could lead to the use of genetically engineered phages to treat bacterial infections that have become resistant to antibiotics.
"This serendipitous finding underscores the importance of basic research," says Anthony S. Fauci, M.D., director of NIAID. "With our increased understanding of how bacteriophages work, we can potentially tailor these viruses to infect and destroy bacteria that have mutated and become drug-resistant."
"This powerful and innovative research opens up numerous possibilities for developing drugs and vaccines that can control resistant bacteria, which are a growing public health concern," says David L. Klein, Ph.D., who oversees bacterial respiratory disease research at NIAID. "The introduction of bacteriophages may also lead to a unique approach against biodefense-related pathogens."
The discovery was made by researchers at the University of California Los Angeles led by Jeffrey F. Miller, Ph.D., professor and chair of microbiology, immunology and molecular genetics. Dr. Miller's team found that the genome of the phage that infects Bordetella bronchiseptica, a relative of the bacterium that causes whooping cough, contains a series of genes that change the part of the virus that binds to the bacterial cell. These genes allow the phage to rapidly e
'"/>
Contact: Paul Williams
pw81y@nih.gov
301-402-1663
NIH/National Institute of Allergy and Infectious Diseases
22-Sep-2004