The work was reported in the most recent issue of the Proceedings of the National Academy of Sciences.
"Viruses are among the most important causes of human disease and are of increasing concern as possible agents of biowarfare and bioterrorism," says author Charles M. Lieber, Mark Hyman Jr. Professor of Chemistry in Harvard's Faculty of Arts and Sciences. "Our work shows that nanoscale silicon wires can be configured as ultra-sensitive detectors that turn on or off in the presence of a single virus. The capabilities of nanowire detectors, which could be fashioned into arrays capable of detecting literally thousands of different viruses, could usher in a new era for diagnostics, biosafety, and response to viral outbreaks."
Lieber and his colleagues merged nanowires conducting a small current with antibody receptors for certain key domains of viruses - such as agglutinin in the influenza A virus. When an individual virus came into contact with a receptor, it sparked a momentary, telltale change in conductance that gave a clear indication of the virus's presence. Simultaneous electrical and optical measurements using fluorescently labeled influenza A confirmed that these conductance changes corresponded to binding and unbinding of single viruses from nanowire devices.
In addition to influenza A, the Lieber group tested nanowire arrays outfitted with receptors specific to paramyxovirus and adenovirus. The researchers found the detectors could differentiate among the three viruses both because of the sp
'"/>
Contact: Steve Bradt
steve_bradt@harvard.edu
617-496-8070
Harvard University
22-Sep-2004