Each year, Americans spend $5 billion on ear infections. Doctors often prescribe two different antibiotics for the same infection. For more serious cases, they perform 500,000-plus surgeries annually, by inserting a tube in the ear drum to alleviate pressure caused by infections.
Nonetheless, about 20 percent of children have repeated episodes of ear infections that persist into adolescence and even adulthood. Chronic infections can lead to loss of hearing and balance, as well as to more critical inner-ear infections.
Meanwhile, researchers scramble to develop new antibiotics as bacteria become resistant to existing drugs.
Samir Ghadiali, professor of mechanical engineering and mechanics at Lehigh University in Bethlehem, Pa., thinks there is a better way to tackle the problem.
Ghadiali, a member of Lehigh's Bioengineering and Life Sciences Program, studies the biomechanical and biophysical properties that govern the eustachian tube, which connects the middle ear to the back of the nose and the upper throat and which helps to regulate air pressure inside the ear.
Ghadiali's work is an example of the growing role played by engineers in the quest to find and test new remedies for medical problems.
Although eustachian tube dysfunction is the primary cause of middle-ear disease, he says, antibiotics and ear tubes do not seek to improve the tube's function.
"The goal of our research is to identify the causes of eustachian tube dysfunction," says Ghadiali. "We hope this leads to the development of novel treatment therapies that target the underlying cause of middle-ear disease."
The eustachian tube is a complex system of muscle, cartilage, and fat tissue. In healthy adults, it opens and closes three or four times a day, and more frequently when an excursion into higher
'"/>
Contact: Kurt Pfitzer
kap4@lehigh.edu
610-758-3017
Lehigh University
25-Feb-2004