When it comes to plant life and animal life, a species usually shows genetic differences in different parts of the world. For the tiny form of life known as micro-organisms, the opposite has been considered to be true they don't tend to differ by geographic location. That long-held view has been convincingly overturned by a study published in the July 24 issue of Science by University of Cincinnati and University of California-Berkeley researchers focusing on a form of life that flourishes in extremely hot conditions.
Co-authors Dennis Grogan of the University of Cincinnati and Rachael J. Whitaker and John W. Taylor of Berkeley provide the most comprehensive proof to date that at least one species of micro-organism in different parts of the world does have genetic differences, if you look close enough. Whitaker, the principal author, focused on the archaeon Sulfolobus, found in acidic hot springs and flourishing at temperatures from 140-180 degrees Fahrenheit. She drew the vast majority of samples for her analysis from an archives developed and stored at the University of Cincinnati Department of Biological Sciences under the leadership of Grogan. Whitaker analyzed the DNA of some 78 cultures from the United States, Eastern Russia and Iceland.
Of those samples, more than 60 came from the University of Cincinnati collection that Grogan has built with the help of National Science Foundation funding as well as the help of undergraduate and graduate students. Micro-organisms From Extreme Environments, a summer course taught by Grogan, involves UC students in laboratory work that "isolates" the archaea samples from hot springs
'"/>
Contact: Marianne Kunnen-Jones
marianne.kunnen-jones@uc.edu
513-556-1826
University of Cincinnati
24-Jul-2003