When he began his studies several years ago, Dr. Carroll was putting stem cells from donor mice into the circulation of an animal model of cerebral palsy. Preliminary work had shown that stem cells migrated to the injury site, but his studies showed too few cells were making the journey. The two-year grant from the American Heart Association, will enable to him to explore whether a direct injection into the brain can help increase the number of cells where they are needed and if the extra chemokines help them become part of a better-functioning brain.
He'll try several direct approaches including injecting chemokines into the injury site first and stem cells second and taking the technically-easier route of injecting both at the same time. To enable this approach, Dr. Carroll will use a virus' ability to infect a cell to get chemokines inside stem cells before they are injected.
Although stem cells are immature cells coveted for their potential to become many different types of cells, donated stem cells may trigger an immune response, much like a transplanted organ. So Dr. Carroll also will compare the success of transplants that include the immunosuppressive agent, cyclosporine-A, to those that don't.
He'll also look at the bottom line: whether the motor skills of the animal model are improved following the transplant.
Since he began his studies of stem cell transplants, parents nationwide have asked when the technique will be available to help children. "I tell them we are working hard and making progress, but it is slow and there may be clinical trials in several years," Dr. Carroll says. Although he thinks there is potential for stem cell therapy to one day help restore function lost to the group of disorders known as cerebral palsy, many unanswered questions remain. One concern is whether these proliferating young cells might cause tumors. Also, cerebral palsy is not a single problem, but a comp
'"/>
Contact: Toni Baker
tbaker@mcg.edu
706-721-4421
Medical College of Georgia
16-Aug-2004