MADISON - Transferring desirable genes into crops is a high-tech game of chance, with success rates running about one in 1,000. But the odds get a whole lot better, it seems, when you remove gravity from the mix.
An industry-sponsored research project aboard the Oct. 29 NASA Space Shuttle suggests that microgravity might enhance genetic engineering of plants. The project, coordinated by UW-Madison's Wisconsin Center for Space Automation and Robotics (WCSAR) , tested a unique technology that uses bacteria as a means for gene transfer.
"The level of genetic transfer from infection was way beyond our expectations," says Ray Bula, the retired director of WCSAR. "We thought if we could double the rate of transfer seen on earth, it would have been promising."
The increase in genetic transfer was more than 10-fold compared to a control experiment conducted on Earth, Bula says.
Collaborators in the mission include the Indiana Crop Improvement Association (ICIA), the Cross Plains, Wis. biotechnology firm Rapigen LLC and the University of Toledo. Researchers from Toledo developed the gene transfer process and the ICIA is interested in applying the results to new soybean crops.
Bula says the team is excited about the results, but cautioned that the experiment needs to be refined and repeated to ensure that the seedlings survive.
Toledo's process begins by slightly damaging the meristem region of plant seedlings. Next, a bacteria that carries the gene is placed in a solution around the plant. The bacteria provide the desired gene that is incorporated into the damaged cells. All subsequent plant parts derived from these meristem cells will carry the desired trait.
Normally, the bacteria simply die off without harming the plant. But the rate of
infection was so high in microgravity that it blocked the vascular system of the
plants. On future missions, Bula says the problem can be corrected in part by
using less bacteria than is needed on earth
'"/>
Contact: Ray Bula
608-798-3772
University of Wisconsin-Madison
19-Apr-1999