"We found that specialized teaching gave the dyslexics' brains a 'jump start' that resulted in activation of the same brain areas used by normal readers" said Elizabeth Aylward, Professor of Radiology at the University of Washington.
Using MRI technology, Aylward and her colleague Virginia Berninger, Professor of Educational Psychology at the University of Washington followed the impact on the dyslexic brain of a unique teaching method, applied over three weeks, which focused on the interrelationships of the sound form, the visual form, and meaning word form and their parts. The meaning word form has parts that signal meaning and grammar. Results showed that training the meaning word form improved ability to analyze sounds and training sounds improved ability to analyze meaning word forms in specific regions of the brain. Whether and how the brain changes depends on the nature of instruction children receive.
"Many educators debate whether it's more effective to teach reading using phonics, which is sound-based, or emphasizing meaning," Berninger said. "But we found that the brain's neural computations are sensitive to sound-meaning interrelationships. Despite differences in the brains of dyslexics and good readers at the beginning of the study, dyslexics could learn if instruction explicitly made them aware of the word forms, their parts, and their interrelationships
Aylward, a professor of radiology at the University of Washington, said that before-and-after images of the brain regions needed for reading indicated that regions that had been relatively inactive in
'"/>
Contact: Monica Amarelo
mamarelo@aaas.org
206-774-6330
American Association for the Advancement of Science
12-Feb-2004