A $400,000 grant from the National Science Foundation is allowing Kennelly to continue his investigations into the process of protein phosphorylation.
That is a process by which nature controls the structure, functions and interactions of the proteins that carry out the chemistry of life. In higher organisms, thousands of phosphorylated proteins are linked together into sophisticated networks. These networks are responsible for coordinating the multiple chemical events that take place inside each cell and modifying these processes in response to changes in the environment.
While the great size of these networks provides them with a high capacity to process a broad spectrum of environmental factors and select appropriate responses, it also renders them difficult to study, Kennelly said. Microorganisms carry out many of the same basic processes as higher organisms, but they do so with a much smaller set of molecular machinery.
"If you consider living cells to be a molecular puzzle, a microorganism puzzle contains from 10 to as many as 100 times fewer pieces than the human puzzle," Kennelly said. "Solving the first puzzle will be much faster than the second. More importantly, the parallels between microbial and human puzzles mean that completing the first puzzle will make solving the second one easier and faster."
The organism the Kennelly lab is studying is called Sulfolobus solfataricus, an extremophile from the "third domain of life" known as the Archaea. Extremophiles live in conditions far more stressful than other life forms can endure.
"The proces
'"/>
Contact: Peter Kennelly
pjkennel@vt.edu
540-231-4317
Virginia Tech
11-Nov-2003