While the dementia and agitation of Alzheimer's disease are painfully obvious to care-givers, the roots of the disease lie hidden and unknown deep in the brains of patients. Now a University of Rochester team has developed a technology that sheds light on the disease at its origins, in the nerve cells throughout the brain that sicken and die.
The team has taken the sharpest molecular snapshots yet of cells affected by the disease, simultaneously measuring the activity of 20 genes within those cells. Scientists believe these profiles of individual cells provide the most thorough information yet on cells from the brains of deceased Alzheimer's patients and provide a way to compare healthy and sick cells in unprecedented detail. The work is reported in the August 4 issue of the Proceedings of the National Academy of Sciences.
"Many Alzheimer's researchers are looking for a molecular change in the blood, or in the spinal fluid, but that's like looking for a needle in a haystack," says Zaven Khachaturian, director of the Alzheimer Association's Ronald and Nancy Reagan Institute and former director of Alzheimer's disease research at the National Institutes of Health. "The Rochester team is able to focus in on cells that actually show pathology from the disease and can compare those to cells that show no sign of disease. That is a significant starting point toward understanding what is happening much, much earlier in the brains of people who have this disease. It's no longer a hit-and-miss approach.
"There is good reason to be excited about this technology."
In Alzheimer's disease, nerve cells throughout the brain die -- but not all cells, not even all the cells in any given neighborhood. Healthy and sick cells are interspersed in the brains of the 4 million people in the United States who have the disease, the leading cause of dementia in the elderly.
"Most researchers take a piece of tissue -- which includes
sick neurons,
'"/>
Contact: Tom Rickey
trickey@admin.rochester.edu
716-275-7954
University of Rochester
3-Aug-1998