Trimmer recently received his third National Science Foundation grant, totaling nearly $1 million to date, to support this research.
An associate professor of biology in the School of Arts and Sciences at Tufts with expertise in cellular biology and neurophysiology, Trimmer has appointments in biomedical engineering at Tufts' School of Engineering and in neurosciences at Tufts' Sackler School of Graduate Biomedical Sciences.
"We are trying to understand how the nervous system controls these complex movements so we can replicate that movement and build our own soft-bodied robots that maneuver easily, like a caterpillar," Trimmer said.
He added, "Our research has potential applications in the design and control of a new type of flexible robot that could be used to navigate through pipelines or intricate structures such as blood vessels and air tubes, as well as space shuttle operations and building construction."
Trimmer's lab is believed to be the only one of its kind to focus on the locomotion of soft-bodied insects, specifically the nervous system and how it works with the biomechanics of the caterpillar. (There are many biologists and engineers that study animals with skeletons and joints with a goal of building jointed, but not flexible robots.)
Two specific aspects of the caterpillar's movement are being examined in detail: first, the research is trying to understand how crawling is controlled by the central nervous system and how it interacts with peripheral structures such as muscles and cuticles. Second, the unique ability of caterpillars to climb using curved hooks at the tips of the abdominal prolegs is being
'"/>
Contact: Kerry Murphy
kerry.murphy@tufts.edu
617-627-4317
Tufts University
12-May-2004