ANN ARBOR---The University of Michigan College of Engineering has been awarded a $1.6 million grant from the U.S. Army to design an artificial eye on a microchip---a first-of-its-kind optoelectronic device capable of sensing and processing light.
The grant, which starts June 1, is part of a three-year Multi-University Research Initiative awarded to U-M, with the possibility of a two-year extension.
Led by Prof. Pallab Bhattacharya, director of the Solid State Electronics Laboratory, the researchers will combine lenses, tiny lasers and tunable light detectors to build the chip, which could help the military conduct the most accurate remote visual sensing yet. The device could also have numerous civilian applications, in navigation systems for vehicles, robotics and, eventually, people with visual impairment.
"We are very excited about the opportunity to undertake this important research, through which we hope to understand a little more of how the human eye works," Bhattacharya said.
Bhattacharya's team will take two approaches to building a prototype system. Both will capture light with a variable focus lens array, and shuttle it to a computer to process the data. The difference between the two versions will be in what happens in between. To preserve the color, the lens system could be followed by a set of microprisms, which will defract the incoming light into three discrete bands---red, blue, and yellow. Those beams in turn will pass into an array of photoreceivers that generate electrical signals, which in turn generate light beams at the individual wavelengths through a so-called vertical cavity surface emitting laser (VCSEL). Or, he said, the device could skip the prism step and simply employ specially tuned photoreceivers with a VCSEL that creates the three desired colors. The designs converge again when the lasers strike the processing unit.
Bhattacharya
'"/>
Contact: Adam Marcus
marcusa@umich.edu
(734) 647-7046
University of Michigan
17-Apr-1998