Dr. Shelagh Campbell, from the U of A's Department of Biological Sciences, is a basic researcher who studies how normal cell cycles are regulated, by analyzing genes that are responsible for repairing DNA damage that offer insights into human diseases like cancer and A-T.
A-T is a progressive, degenerative disease that affects a startling number of body systems. Children with A-T appear normal at birth but at around the age of two, some of the first signs--walking and balance is wobbly caused by ataxia or lack of muscle control--start appearing.
"Kids are often misdiagnosed with cerebral palsy but what distinguishes A-T is it gets worse," said Campbell. "Sadly, many of the people with A-T end up in wheelchairs and most die young (I think there is a fair range).
Soon after the onset of A-T, children lose their ability to write and speech becomes slow and slurred. Reading eventually becomes impossible because eye movements are too hard to control. Other features of the debilitating disease include mild diabetes, premature graying of the hair, difficulty swallowing causing choking and drooling and slowed growth. Children with A-T also tend to be more predisposed to developing cancer. Ironically, the disease carries with it sensitivity to radiation, which means A-T patients cannot tolerate the therapeutic radiation usually given to cancer patients.
That's where Campbell hopes to apply her work. Scientists already know that the A-T protein (ATM) is fundamental to repairing DNA damage so she and her research team are studying ATM mutants, which behave as cells do when they are damaged.
In a recent issue of the journal, "Current Biology," Campbell describes how they examined ATM mutants for signs of locomotor defects in mutant a
'"/>
Contact: Phoebe Dey
phoebe.dey@ualberta.ca
780-492-0437
University of Alberta
23-Sep-2004