Scientists have used a technique called RNA interference to impair cancer cells' ability to produce a key enzyme called telomerase. The enzyme, present in most major types of cancer cells, gives cells the lethal ability to divide rampantly without dying. The laboratory experiments create an opportunity for researchers who are focusing on telomerase in a bid to develop a drug like none ever developed - one capable of killing 85 percent of cancers
The research, led by Peter T. Rowley, M.D., of the University of Rochester Medical Center, is being presented today at the annual meeting of the American Association for Cancer Research in Washington, D.C.
The enzyme telomerase produces telomeres, located at the ends of each chromosome, which protect the ends of chromosomes as cells divide. In a normal cell, the telomeres shorten each time the cell divides. After a cell divides 50 to 100 times, the telomeres shorten so much that they can no longer protect the chromosome, and the cell eventually dies.
Scientists believe that such cell death is normal, even healthy. But as a healthy cell turns cancerous, a genetic mutation triggers the production of telomerase, which restores the telomeres to normal length. The restored telomeres enable the cell to divide, unchecked, thousands of times instead of the usual 50 to 100. Over time, a few cancer cells can multiply into a golf-ball-sized tumor or spread to other parts of the body.
Since researchers discovered the important role telomerase plays in most cancers in the mid-1990s, much attention has been focused on finding a way to attack them. Several methods are in various stages of development.
The University of Rochester team used RNA interference to disrupt the production of telomerase in various cancer cells including colon, skin, cervical, and lung cancer. They crafted tiny snippets of double-
'"/>
Contact: Christopher DiFrancesco
chris_difrancesco@urmc.rochester.edu
585-273-4790
University of Rochester Medical Center
14-Jul-2003