BLACKSBURG, Va., Oct. 30, 1998 -- Malaria, a parasitic disease transmitted by mosquitoes to humans and animals, has made such a dramatic re-emergence in many areas of the world that the last five years has seen the growth of global interest in finding novel strategies to control the disease. Somewhere in the workings of the genes of mosquitoes may be a key to disrupting the insect's complex relationship with the parasites, a key that could break the cycle of transmission.
Shirley Luckhart, an assistant professor of biochemistry at Virginia Tech, is searching for that key. She's studying the two-week period when the malaria parasite develops inside a mosquito.
Only about 70 of the hundreds of mosquito species are capable of transmitting malaria. The disease-causing parasites must negotiate a torturous life cycle that alternates between the mosquito and an animal host. Parasites are ingested by a susceptible mosquito as it sucks blood from an infected host.
The parasite must then mature and reproduce during a two-week period in the mosquito, creating a new generation of parasites which are injected into another host when the mosquito feeds again.
Luckhart said that resistant parasites have emerged for each of the eight drugs that are commercially available to treat malaria. The species of mosquitoes that carry malaria are also becoming resistant to a number of control methods.
Countries witnessing a rising incidence of the disease are often experiencing dissolving social structures, which leads to increasingly ineffective control measures.
"The approach we're taking, if it's successful, is to develop transgenic
mosquitoes that are incapable of transmitting the parasite," she said. "We're
really at the beginning of a three-step process. First we need to identify
candidate genes that affect the life cycle of the para
'"/>
Contact: Shirley Luckhart
luckhart@vt.edu
540-231-5729
Virginia Tech
30-Oct-1998