Himadri Pakrasi, Ph.D., Washington University professor of biology, is the principal investigator of a five-year, five million dollar project from the Frontiers in Integrative Biological Research (FIBR) program at the National Science Foundation (NSF). In this project, a team of interdisciplinary researchers plans to use a systems biology approach to delineate the genes and proteins in photosynthetic organisms such as cyanobacteria and plants and model the system these organisms use to cope with radicals. These are products of oxidation and reduction (redox) processes, and are key culprits causing cellular aging.
Cyanobacteria are organisms that gave rise to chloroplasts, the oxygen factory in plant cells. A half billion years ago cyanobacteria predated more complex organisms like multi-cellular plants and functioned in a world where the oxygen level of the biosphere was much less than it is today. Over its very long life span, cyanobacteria has evolved a system to survive a gradually increasing oxidizing environment, which is why Pakrasi and his group want to study the organism so closely.
"The basic goal of the project is to model the networks that cyanobacteria, a model vascular plant called Arabidopsis, and the non-vascular moss Physcomitrella use to handle this chemical environment," said Pakrasi. "We're approaching this in a systematic way, using global genome-based information on all three organisms. We've recruited colleagues outside our a
'"/>
Contact: Tony Fitzpatrick
tony_fitzpatrick@wustl.edu
314-935-5272
Washington University in St. Louis
16-Sep-2004