The full project will be an international collaboration involving several additional laboratories worldwide, including United Kingdom laboratories run by David Cove, Ph.D., and Andrew Cuming, Ph.D.; a German laboratory headed by Ralf Reski, Ph.D., and a Japanese laboratory directed by Mitsuyasu Hasebe, Ph.D.
The diversity of the researchers will expand the usefulness of the genome sequence into a wide spectrum of research, encompassing how genes function in plants to how plant genomes evolved.
Although the moss Physcomitrella patens is a small plant, its genome (about one-half billion base pairs) is actually larger than that of the first plant genome to be determined: Arabidopsis thaliana, a simple flowering plant that plant scientists worldwide use as a model for the study of seed plants, and about the same size as the genome of the crop plant rice.
Mosses are considered to be the first land plants that evolved about 450 million years ago, predating the flowering or seed plants by some two hundred million years. Although this non-vascular plant lacks structures such as flowers, seeds, true roots, stems and leaves, some of its traits, for instance, surviving extremes of dehydration, may be adapted for use in contemporary crops.
Unique experimental features include few and simple cell and tissue types, ease in growing and undergoing sophisticated genetic manipulation including th
'"/>
Contact: Tony Fitzpatrick
tony_fitzpatrick@wustl.edu
314-935-5272
Washington University in St. Louis
26-Aug-2004