"We were able to use gene expression profiling to determine that alcohol produces multiple effects on different biological processes," said McBride, "and that these changes are different in several brain regions which may be involved in alcohol addiction."
"Thus far, genes that appear to be responsive to alcohol include genes involved in the intracellular signaling process (which can alter how the neuron functions), neuropeptide signaling (which modulates nerve cell activity), and myelin structure (which is needed for communication between nerve cells)," said McBride. "Gene expression profiling has also been used to identify chromosomes and chromosomal regions that influence alcohol drinking and response to alcohol."
"Learning and memory require enhanced synaptic function between neurons," explained McBride. "Enhanced synaptic function is characterized by increased formation of synaptic proteins. The stimulation of VTA dopamine neurons by alcohol increases the expression of genes involved in the synthesis of synaptic proteins in target regions of the VTA. In short, these results suggest that alcohol can produce changes in the brain reward system that can further increase the rewarding effects of alcohol."