"The prefrontal cortex is involved in motivated behaviors," noted McBride. "Studies with humans indicate that this brain region is sensitive to the effects of heavy alcohol drinking and repeated withdrawals. The microarray technique provides insight into cellular changes that occur over time with chronic alcohol drinking and repeated withdrawals."
Collectively speaking, added McBride, findings presented at the symposium demonstrate the quantitative and qualitative applications of microarrays to studying the genetic and biological bases of alcoholism and alcohol abuse within discrete brain regions.
"For researchers, microarray technology has the potential of studying the genetic and biological bases of alcohol's rewarding effects, sensitivity to the effects of alcohol, development of tolerance to the effects of alcohol, development of alcohol dependence, and alcohol withdrawal severity," he said. "For the average reader, knowing which genetic profiles might contribute to excessive alcohol drinking could be used to identify risk factors that contribute to alcoholism and alcohol abuse, and could aid in the development of selective treatment strategies for different subgroups of alcoholics."
McBride added that, despite recent advances, researchers need further developments in microarray technologies and bioinformatic approaches to better understand the complex neurobiological mechanisms underlying alcohol addiction. "Future research will need to determine changes in gene expression in very discrete neuronal pathways that may be involved in mediating the effects of alcohol that lead to addiction," he said. "Future studies will also require the integrative efforts of many investigators working with different animal models in
'"/>
14-Feb-2005