CIRCE developed the Bat-Bot to closely mimic the amazing echolocation skills of bats and to act as a tool for further research in echolocation.
"Sonar in water is a mature field, but sonar in air is far less advanced," says Dr Herbert Peremans, who is head of the Active Perception Lab the University of Antwerp and CIRCE coordinator.
"Whenever a robot team wants to build an autonomous robot they look at sonar first, but they quickly run into problems due to the simple nature of commercial sonar systems, and switch to vision or laser-ranging. We hope that the research we can now do with the robotic bat will lead to more sophisticated sonar systems being used for robot navigation and other applications," he says.
One of those potential applications could be identifying plants using echolocation. During development of the Bat-Bot CIRCE research validated that different plants give off unique echo signatures.
"We tested several plant species and they could all be reliably identified by echolocation, proving that in principle the technique could work for plant identification. But further research into the technique is needed," says Peremans.
While building the robotic head was the primary aim of CIRCE, the group generated many useful results along the way. One project partner developed a broadband transducer that could both convert acoustical energy to electrical energy and electrical to acoustical across the 20 to 200 kHz spectrum.
"There are about 700 echolocating bat species, and they use a wide range of frequencies. We needed a single device that could handle that entire range. The transducer developed by one of the partners can do that and has some additional advantages making it a promising technology for further commercialisation," he says.
The project als
'"/>
Contact: Tara Morris
tmorris@gopa-cartermill.com
322-286-1985
IST Results
22-Aug-2005