The wound-healing work, published in the May 18 issue of Nature, sheds light on how the body repairs wounds and may have implications for preventing or treating chronic wounds such as pressure or bed sores arising from long periods of immobility. Along with the pain and scarring, bed sores significantly increase health care costs in nursing homes and hospitals.
A separate report by the same Hopkins group, published in the May 15 issue of Genes and Development, reports a new and different role for the same protein in promoting hair follicle growth, although the investigators were quick to caution that there's nothing in their work - yet - to suggest a way to prevent or cure human baldness.
K17 belongs to a family of proteins known as keratin intermediate filaments, which are part of the cytoskeleton, an intricate network of flexible protein fibers that maintain cell shape and strength. By studying mice genetically engineered to lack K17, the Hopkins researchers discovered that cells need it to turn on signals that lead to the manufacture of new proteins and cell growth when skin is damaged.
"Here we show an entirely novel and possibly independent, nonmechanical function in which these filaments latch onto and regulate cell signaling proteins," says the study's senior author, Pierre A. Coulombe, Ph.D., professor of biological chemistry in the Institute for Basic Biomedical Sciences at Hopkins. "The involvement of K17 in wound healing has not previously been known to influence the making of proteins, and this information has profound implications for our understanding of the role of the cytoskeleton in da
'"/>
Contact: Audrey Huang
audrey@jhmi.edu
410-614-5105
Johns Hopkins Medical Institutions
17-May-2006