SANTA CRUZ, CA -- Proteins of all sizes and shapes do most of the work in living cells, and the DNA sequences in genes spell out the instructions for making those proteins. The crucial job of reading the genetic instructions and synthesizing the specified proteins is carried out by ribosomes, tiny protein factories humming away inside the cells of all living things.
Harry Noller, the Sinsheimer Professor of Molecular Biology at the University of California, Santa Cruz, has been studying the ribosome for more than 30 years. His main goal is to understand how the ribosome works and how it evolved, but there are also practical reasons to pursue this research. Many of the most effective antibiotics work by targeting bacterial ribosomes, and findings by Noller and others have led to the development of novel antibiotics that hold promise for use against germs that have developed resistance to current drugs. Drug-resistant staph infections, for example, are a serious problem in hospitals.
Noller's laboratory achieved breakthroughs in 1999 and 2001, producing the first high-resolution images of the molecular structure of a complete ribosome. Now, his team has made another major advance with an even higher-resolution image that enables them to construct an atom-by-atom model of the ribosome.
The new picture shows details never seen before and suggests how certain parts of the ribosome move during protein synthesis. A paper describing the new findings will be published in the September 22 issue of the journal Cell and is currently available online.
"We can now explain a lot of the results from biochemical and genetic studies carried out over the past several decades," Noller said. "This structure gives us another frame in the movie that will eventually show us the whole process of the ribosome in action."
The ribosome is a complex molecular machine made up of proteins and RNA molecules. The bacterial ribosomes studied in N
'"/>
Contact: Tim Stephens
stephens@ucsc.edu
831-459-2495
University of California - Santa Cruz
13-Sep-2006